The best way to increase CFM on an air compressor is to make some adjustments to your system such as adding another compressor pump or an air receiver tank for extra storage. Some tools require CFM ratings greater than your air compressors rating in order for them to successfully operate.

Here’s you’ll find recommendations on how to adjust your compressor so that you can reach your desired air flow rate (CFM).

Table of Contents

How to Increase CFM of an Air Compressor

To increase the CFM that you can draw from the outlet of your air compressor you have 2 main options; 1. increase the pumping capacity of your air compressor system or 2. Increase the air storage capacity of your system.

To be clear, none of these options will increase the inherent DESIGN specified CFM of your original compressor – that would take pump modifications.

BUT…

You’re not actually interested in increasing the CFM of your compressor PUMP (which is what’s specified in the user manual) what you’re actually interested in is increasing the CFM you can draw from the OUTLET of the air compressor tank – to allow you to run an air tool that has a higher specified working CFM than your compressor PUMP.

I explain this concept of CFM of the air compressor pump vs CFM of the whole air compressor system in my article explaining how to calculate CFM of an air compressor system.

If you’re confused as hell about CFM, it’s probably worth reading my article; what is CFM?

Whether you add more pumping capacity to your air compression system or more air storage capacity will depend on whether you have an intermittent or continuous demand for air for your air tool.

Increasing CFM for Cyclical or Intermittent Air Tool Use?

If you have short periods, intermittent, or a cyclical high demand for CFM that isn’t continuous you have more options for increasing CFM. Ultimately adding air storage capacity will enable you to increase the CFM of the system for a period of time dependent on the level of air storage.

Increasing CFM for Continous Air Tool Use?

If you have a more continuous demand for a higher CFM (continuously running the air tool), your compressor pump CFM will need to match the demand of the air tool. Adding extra air storage capacity to the system will therefore not be a suitable option and you’ll be limited to options that add more pumping capacity (CFM) to the system.

Air Compressor Continuous vs Intermittent Running

Regardless of the cyclical, intermittent or continuous use of air tools connected to your compressor, it’s important to note that your air compressor will likely be designed for “cyclical operation”. When I talk about cyclical or continuous use above,

I am talking about the AIR TOOL.

The air compressor will be designed for periods of operation (pumping) followed by periods of idling (cooling down). This is called an air compressor duty cycle, which is typically expressed as a percentage, such as 50% – which means the compressor needs as much time cooling as it does operating. Find out more about air compressor duty cycles in my comprehensive guide to compressor duty cycles.

Methods for Increasing CFM on an Air Compressor

Best methods for increasing CFM on air compressor system:

  • Decreasing the pressure to increase CFM
  • Adding another compressor of the same CFM
  • Connecting two compressors together of differing CFM
  • Adding another air receiver tank
  • Increasing the size of the existing compressor

Decreasing the Pressure to Increase CFM

With the air pressure being built inside the air compressor, it is then forced out the outlet at a certain flow rate (CFM – voulme/time). Every compressor has its power rating, and this power is equal to the pressure multiplied by CFM (air flow rate). As you cannot easily increase the compressor’s power beyond its limit, reducing the pressure in the system by dialling down a regulator will cause the CFM to increase – power remains constant.

If you’re familiar with air compressors, you may have already looked at this option before searching for ways to increase your air compressor CFM. However, many compressor users don’t realise that your compressor OUTLET CFM is variable based on the outlet pressure that you set.

If you have a compressor that’s rated at 4 CFM at 90 PSI, you can probably run a tool with a continuous demand for a CFM of 5, or even higher if the WORKING pressure required by the tool is around 40 or 50 PSI.

This is because at the outlet of your air compressor tank, there is an inversely proportional relationship between CFM and PSI (within certain bounds).

So pay attention to your air tools CFM rating and their working pressure – it’s possible that the working pressure may be lower than 90 PSI, so you might be able to get an instant boost in CFM from your existing compressor.

Considerations of Decreasing the Pressure to Increase CFM

  • Suitable for continuous use of air tools (as long as compressor CFM exceeds tool CFM demand)
  • Suitable for intermittent use of air tools
  • Most cost effective solution – it’s just adjusting your compressor
  • It relies on you air tool having a sufficiently lower working pressure than 90 PSI (as CFM ratings are typically specified at 90 PSI)

The relationship between CFM vs PSI is complex, so calculating the CFM your compressor can deliver at a lower outlet pressure could be extremely difficult – and unreliable. Try not to rely on this method for drastic increases in CFM (say more than 20-25%).

The CFM of your compressor at the lower pressure still needs to exceed the CFM demand of your air tool if the tool is to be utilised on a continuous basis.

Therefore, when it comes to continuous use, this methodology is limited to scenarios where your existing compressor is in fact capable of delivering your required CFM but at a lower outlet pressure than the standard compressor CFM rating at 90 PSI.

You may still be able to get away with an underrated compressor in terms of CFM at a lower pressure. If you’re not continuously drawing down a higher CFM than your compressor pump is capable of providing, your compressor tank will act as a reservoir allowing your compressor to “catch up” between AIR TOOL use cycles. But be careful not to exceed your air compressor duty cycle!

So even if this methodology gets you half way to closing the gap between your compressed air flow demand and your compressors ability to supply, this might just be enough for many cyclical air tool use applications.

Adding Another of the Same Compressor to the System

Adding another compressor of the same CFM, brand and model can help double your current air compressor CFM rating without adding control complexity.

This method increases the CFM of the air compressor pumping system, whilst also enabling a higher CFM at the air compressor tank / air pressure regulator outlet.

Once you have your duplicate air compressor in place, you can quite simply connect the two compressors together using some compressed air line and a T-piece air fitting. You then can plug your air tool or air line leading to your air tool into the outlet on the t-piece.

As the air compressors are the same make, model and size, they’ll have the same cut-in and cut-out pressures set on their pressure switches, meaning there’s no synchronising of control issues to overcome… great!

Considerations of Adding Another Compressor of a Similar CFM

  • Great for continuous air tool use applications – the air compressor system has a higher CFM
  • Suitable also for intermittent air tool use
  • Not as cost effective as a second compressor is purchased
  • Pressure switches should be identical, but manufacturing variations could mean some adjustment might be required to sync cut-in and cut-off pressures
  • Still need to check the DUTY CYCLE of the air compressors to size the air compressors correctly in relation to the air tool working CFM

A duplicate air compressor might be a more drastic approach to increasing you CFM if you haven’t got a continuous demand for higher CFM.

For example, a compressed air tank with a 5-11 gallon capacity, like this one from Performance Tool might cost you a fraction of the cost of a brand new second compressor – and still solve your low CFM problem (for short periods of continuous use).

Applications such as operating air wrenches and framing nail guns are examples of where a high CFM rating air compressor would be required for continuous use.

Connecting Two Compressors Together of Differing CFM

Similar to the last suggestion, but now focusing on connecting 2 air compressors of differing CFM, make and model. It’s as simple as it sounds. Not the process, but the concept.

If you have two compressors that have a 10 CFM and 5 CFM rating respectively, then connecting them together will give you 15 CFM of continuous flow rate.

The process of connecting the 2 compressors together involves the following steps:

  1. Connect the outlets of the air receiver tanks using a t-piece air fitting
  2. Connect your compressed air hose to the outlet of the t-piece
  3. Connect you air tool to your air hose

Example T-Style Air Manifold for connecting 2 compressors together:

Considerations of Connecting Two Compressors Together of Differing CFM

Controlling Cut In of Two Different Compressors

Operating 2 different compressors of differing size, power, CFM and even pressure can be a tricky business. It’s likely that the pressure switches for each compressor will be set to cut in at different pressures.

Now that the compressors share a storage volume (as their tanks are connected with a hose) the pressure in the system as a whole will trigger each compressor to cut in.

If the cut in pressure of one compressor is 80 PSI and the other 90 PSI, the second compressor won’t cut in until the system drops below 80 PSI – and this will happen whilst the compressor that cut in at 90 PSI is working.

This is a control system issue – to prevent one compressor from doing all the work and ultimately yielding the true potential CFM of the system, you need to have the cut in and cut off pressure set the same.

This might mean you need to fit adjustable pressure switches to both compressors and syncronize them with a bit of manual work.

If you’re wondering how to adjust an air compressor pressure switch, I wrote a whole article dedicated to adjusting your pressure switch cut in and cut off pressure.

Adjusting the Pressure Switches

You must consider the pressure switches on both compressors, and if they have similar cut in and cut out points. If they do, then they will work approximately the same amount depending on your air tools air demand.

If you have a gap in the cut in between the two switches that is too big however, one compressor will be doing all the work, starting and stopping much more frequently than the other. This will lead to increased maintenance requirements and potentially a short life span.

And, this ultimately lowers your peak CFM as the peak CFM is achieved when:

  • The tank is 99% full
  • Both compressor pumps are operating just prior to cutting out

If the system is 99% full and only the 10 CFM compressor is operating, the actual peak CFM capability of the system is equal to the 10 CFM compressor, plus the delivery capacity in the air tank.

Whereas, when the system is 99% full and both the 10 CFM and 5 CFM compressor are operting – the peak CFM of the system is equal to 10 + 5 CFM plus the deliver capacity in the air tank.

Adding Another Air Receiver Tank

Adding another air receiver tank will allow for the air compressor to fill both tanks (one with the compressor + the one added) offering you a far greater storage of air. This will mean that the air compressor motor will run for a longer period before reaching cut out pressure and stopping allowing you to use your tools for a longer duration. The compressor pump is now filling a larger volume and thus you have a greater amount of CFM due to the larger reservoir of pre-compressed air waiting to be used for your high demand air tool (oversimplification as an increased tank size changes the available CFM for a period of time, not the CFM of the system).

This is by far my favorite solution for increasing the CFM of your compressed air system.

I specifically say “compressed air system” as it’s not true to say that adding a second air tank to a compressor increases the “air compressor CFM” – that’s If you take “air compressor CFM” to mean “air compressor PUMP CFM”.

The CFM available at the OUTLET of the compressed air tank (or the air pressure regulator) is actually a separated from the CFM of the Air Compressor PUMP by having air tanks to store the compressed air in (within limitations).

So I can actually get 15 CFM out of an air compressor SYSTEM even when the air compressor is rated to 5 CFM – I just need a big enough set of storage tanks, and 15 CFM would only be available for a fixed period of time – as the air compressor PUMP wouldn’t be able to keep up with the demand.

In addition to that…

Adding a second tank to an air compressor will allow the compressor to have more cooling time (assuming you’re not drawing more CFM from the system than the compressor pump can generate). This is because there’s now a greater volume of air stored, so your air tool can run for longer before the air in the tanks drop below the air compressor pump cut in pressure.

So this is also a great way to help reduce the stress on your air compressor – if it’s got a 50% Duty Cycle and it spends 5 minutes on and 2 minutes off – you’re over-stressing it!

Check out my guide to air compressor duty cycles for more info.

Considerations of Adding Another Air Receiver Tank

It’s important to make sure your compressor is still operating within its limits of the duty cycle. Adding a tank to the system can actually decrease the working time vs idle time ratio, resulting in a reduction in the duty cycle even if the pump is actually running for longer.

This technique is a great way of reducing the load or how hard your compressor works, giving you the ability to allow it to operate at a lower duty cycle safely and whilst delivering the CFM requirements of your air tool.

This technique of increasing CFM can cause you to have to stop-start your work frequently if you are continuously drawing down air, that’s why this solution is better for stop-start or non continuous applications as the compressor pump is given time to “catch up” with demand.

When the air receiver tanks drop below the cut in pressure, the air compressor will require a greater amount of time to refill the tanks, as you now have a greater volume to refill than when you had just one tank.

This is a key consideration as the length of time the compressor runs for and the amount of time it spends idle (cooling down and not operating) have these duty cycle limits which are specified by your air compressors manufacturer. Operating a compressor outside its specified duty cycle runs the risk of causing permanent damage or even failure to the air compressor pump and motor.

Note, the bigger the tank, the longer the ‘periods of continuous’ use can be without the compressor essentially lagging behind demand. This ultimately leads to the system producing less than the required CFM.

The smaller the air receiver tank, the smaller the ‘periods of continuous use’ can be without the compressor ‘lagging behind’ demand.

An impact gun would be an example of a tool that see’s short periods of continuous use in it’s typical use case.

On the other hand, a CNC machine or wet spraying gun might demand longer periods of use at their required CFM. This would either demand a huge air storage capacity using an underrated compressor, or for you to actually increase the compressor pump delivery CFM capability.

Increasing the Size of the Existing Compressor Pump & Motor

Increasing the compressor pump can give you increased CFM which you can call upon continuously. Increasing the size of the motor won’t necessarily increase the CFM as the pump is typically designed to work with a specified motor size, so you essentially would end up with an oversized motor on a tiny pump.

Considerations of Increasing the Size of the Existing Compressor

Retrofitting a new compressor pump and motor to an existing tank may be marginally cost effective depending on your tank size and age. In many cases it may be more cost effective to simply buy a new, higher CFM compressor complete with a tank suitable for your applications.

Please be vigilant in your research prior to making any changes to ensure that your air compressor is capable of them.

Summary of Methods to increase Compressor CFM

Below is a summary table of the methods to increase compressor CFM:

MethodDifficulty (High/Mid/Low)Do you require extra components?Ideal for Continuous (C) or Intermittent (I) Use
Decreasing the Pressure to Increase CFMLowNoC
Adding Another Compressor of a Similar CFMHighYesC & I
Connecting Two Compressors Together of Varying CFMsHighYesI
Adding Another Air Receiver Tank MedYesC & I
Increasing the Size of the Existing Compressor Pump & MotorMedYesC & I
Methods for Increasing CFM on an Air Compressor Summary Table

Reader’s Questions Answered: Increasing Air Compressor CFM

Question: Can you increase CFM on an air compressor? Or Increasing SCFM?

This writer wants to know how to increase CFM of their air compressor as the output is not enough for spray painting purposes. (The writer actually wanted to know about how to increase SCFM on an air compressor, but the fact that what we’re actually talking about here is CFM is dealt with quickly in the response).

The question: I understand that the rate of SCFM depends on many factors (temp, humidity, etc). However, I am trying to drive a Car Paint gun that states 8 SCFM rating. My compressor runs at 5.7 SCFM @ 40 PSI.

Now, I could buy a new compressor to increase that, but I don’t really do this task very much, and was curious if I could do any of the following to increase SCFM?

Run two compressors, borrow my neighbors and connect them to a T and drive a mainline out that would connect to the filters and the gun?

Or could I connect a 10 Gallon tank that is connected from my main compressor and connects to the spare tank. I would set the main compressor to 90PSI, and put a regulator on the spare tank for 40PSI which the gun calls for?

Or if I am not thinking right at all please let me know what might make the most cost effective solution.

Increase SCFM in an air compressor? Selection of air compressors
Can you increase SCFM in air compressors like these, or any, for that matter?

Answer

My response: Hi Michael: Thanks for your question. You say your paint gun states “8 SCFM” at 40 PSI.

Just FYI, to my mind and definition, compressed air isn’t SCFM, it’s CFM, since I understant that SCFM refers pre-compressor Standard Cubic Feet per Minute. But besides that….

Your present compressor will give you 5.7 CFM at 40 PSI. What pressure and flow will your neighbor’s compressor provide? Is it big enough to give you all the flow you need at the 40 PSI?

You can certainly run two compressors to the same reservoir. As you point out, you’ll need to adjust the cut out and cut in pressures of the two compressors to have them work properly.

Having an extra air reservoir that fills when the paint gun isn’t running will be helpful. It’s hard to say how long you can paint with the air from that reservoir before you empty it and your compressor supply pressure drops to cut in and the compressor has to run again to try and fill the tank.

Original Poster’s Response

Michael’s Response: Thanks a lot for the great information, you are right, I did not say but I can’t run the guns currently because I don’t have enough SCFM.

About putting the T in the system:

1.) Would I just use a common 1/4 NPT fitting and run both compressors to it?

1.a.) In regards to the pressure switches, that would be a concern only if I did this as a full time thing, but I could just set both compressors to 90PSI and let them run when the air is low correct? I just need to paint parts of the car about 1 – 3 hours tops before shutting down.

2.) Should I have an additional tank that receives the air from both tanks then draw air from it. I would assume I could just punch a hole in the tank, thread the fitting and use a T to input air, then use a regulator to set the PSI out of the spare tank?

3.) Would it make any sense to punch a hole in my current compressors tank towards the bottom, and thread it for an NPT coupling through which another compressor would connect. This would fill the tank on top of the other compressor. I am not sure if threading new holes in the side of tanks is safe since the metal seams thinner compared to the fittings that are in it from the factory.

Thanks again for all the help.

Anonymous Poster’s Response

Another visitor commented on Increase CFM:

Michael, your little compressor can not obviously compress air at the rate the paint gun can consume it. So how do you run your paint gun then?

You don’t mention it, but I’m thinking that you have a compressor that fills an accumulator tank, and that would be your available air supply. The volume of the tank is your CF (cubic Feet of storage). Depending on the size of the main tank, you will be able to use the paint gun at 5.7 SCFM until the tank was drawn down to the “cut-in” pressure (when the compressor would automatically turn on). At that point, you might as well take a break, let the compressor re-fill the tank and then rest (cool off and let the moisture condense).

By adding a second tank into the system, you have increased the system storage capacity (@ 90 psi), and will be able to run the paint gun for a longer interval. Put a regulator between the last air tank and the gun, set at the tool presure (40 psi). You will still face the same problem when the system capacity is drawn below what the compressor can produce.

I would definitely add a second tank, the larger the better. Just remember that it will take your compressor longer to fill the system, but more air volume will be available to your tools, and the compressor will not cycle as often.

If this doesn’t give you enough “paint time”, then borrow your good neighbor’s compressor and “TEE” it into the system. The combined SCFM outputs of the compressors will run the paint gun, and fill up both tanks.

This is what I recently did in my shop when I added a second compressor (I posted it on this site). Because the compressor’s were not identical in size and HP, the pressure switches had to be replaced with adjustable one’s, so that they both came on and off at the same time. In your case, as this is not an every day project, you can manually play with the compressors to get them going at the same time.

I hope that this helped you.


Question: I want to increase my compressor pressure from 145 psi to 200 psi?

by rajesh saklani
(mumbai)

I want to increse my compressor pressure from 145psi to 200psi 60hp – 238cfm – 145psi

Answer

My Response: Rajesh, if the air compressor is not built to produce 200 PSI, then it won’t do it. If you try to ajdust the cut out pressure to a higher level, you are at risk of damaging the compressor, or possibly yourself, if the components in the compressor air circuit are not built for that pressure.

Check the specs on your air compressor to see what pressure it is rated for. If that pressure is not high enough for your needs, you need another air compressor!


Question: How to increase cfm of compressor

by Rhett
(Dadeville, AL)

I’ve got a small 1.5HP, 6 gal, 2.5 CFM pancake Husky air compressor. That’s below the specs for most nailers. Could adding another 5-gal tank almost double it’s CFM?

Thanks

Answer

My Response: Nope, adding another tank will just give you that much more pre-compressed air, and that means that you will be able to nail longer before having to stop and wait for the compressor to catch up.

It also means that it will take longer for the compressor to come back up to cut out pressure level.

You can’t increase CFM from a compressor without increasing the motor and/or the pump size.

What you can do is dial down the pressure on your regulator to the lowest pressure level your tool will work at. This will make your air charge last longer before the compressor has to restart to bring the pressure back up.


Question: How do I get more pressure to fill truck tire to 120 psi?

by Larry
(Waltham, Quebec, Canada)

I have recently purchased a new compressor.

Twin piston, oil base. It is suppose to develop 125psi at max.

I am typing to fill truck tires that require 120psi, but it wont go past 80 psi. The output gauge is set to 110 psi, and won’t go any higher. The tank gauge is showing 130psi, so in theory I should be able to get these tires inflated to at least 110psi. Why can’t I get more than 80psi in these tires?

Answer

My Response: Larry, “It is supposed to develop 125psi at max.”, in my opinion, the output figures of air compressor suppliers are similar to those of the mileage claims for the car manufacturers. It just ain’t so!

You are, with your reputed 125 PSI compressor output, trying to fill a tire that needs 120 PSI. It may not be possible. Not only are you pushing the envelope for the air compressor (like driving your car with the pedal to the floor all the time) but you may also have issues with the accuracy of your air gauges. The cheapo kind installed on low cost air compressors might have an accuracy of +/- 2-5 PSI from what you see on the gauge.

Now, you say that the “The output gauge is set to 110 psi,” and won’t go higher. I take this to mean that your air regulator is set for 110 PSI, and regardless of how you try to adjust it, you can’t get the gauge reading to go up past 110 PSI, even though the tank gauge shows 130 PSI?

That is strange. First, that your air compressor is rated for 125 PSI, and you are seeing 130 PSI on the tank gauge. That may be the gauge inaccuracy I wrote about earlier, yet it does speak well that your air compressor can deliver the output it promises.

You have an air line to your tire chuck? Try this. Put a connect on an air gauge, and plug that air gauge onto the air line. If it, too, sees 110 PSI, then that is all your regulator is allowing through, and that may mean a bum regulator, if it is, indeed, rated for handling up to 130+ PSI.

Perhaps you might post a comment here with results?


Question: How to increase compressor cfm?

by Mack
(Juneau, AK)

I currently have a compressor with 3.2HP motor running at 1040 rpm producing 11.2 cfm @ 90psi. If I install a 5HP motor running @ 3240 rpm will it produce more cfm? If so what would be the max rpm I could do?

Answer

My Response: Howdy Mack. Nice to hear from you.

If the mechanical ability of your compressor can handle the higher RPM, then yes, in theory, you could get more CFM out of it.

However, I’d be willing to bet that by up-sizing the motor, you’ll destroy the compressor mechanically in fairly short order. They are designed and built to handle the motor that comes with them.

Good luck in your experiment.


Question: 2 compressors – plumb them together to increase flow?

by victor
(pa)

This sounds simple, but you know how that goes. If I want 12ish cfm can I just use (2) 6ish cfm compressors and some kind of Y connector to supply a sandblaster?

Answer

My Response: Victor, having two compressors supplying your application will increase the available flow, but whether or not you will get a true 12ish CFM or not remains to be seen.

If it were me I would have the two compressors feeding into one tank using the “Y” you spoke of, but upstream from the “Y” in the line from each compressor, you would need to put a one way valve so that air can only flow downstream to the tank, and not back into the adjoining compressor tank.

Then I would plumb the line from the tank to my sandblaster or other air tool.


Question: I want more cfm

by Joe
(Minnesota)

i have 2 extra compressors sitting in a corner of my garage, and i want to get more CFM…

my current compressor is a 3 HP, 18 gal

i want to run about 8 cfm @40 psi

do I still need check valves if I have output regulators on all 3 compressors set to the same psi, tee’d up, then run through my 3/4 NPT filter-regulator-oiler, and use the regulator on that to control working pressure? i use about 30 feet of 3/8 air hose on a reel…

if it works, i plan to put valves on all 3 so i can just run 1 or 2 and not have it charging all 3.
i am restoring old snowblowers, and find that i use air alot.

Another issue is that i have had couplers freeze up in the winter, is there anything i can do to prevent this, I.E., put an ice-melting fluid in the oiler?

Answer

My Response: Joe… what, you have cold weather in Minnesota? Who’d have thought. 🙂

Bone dry air won’t freeze couplers, valves, cylinders, or air tools.

Some folks run anti-freeze through the air lines using an in-line lubricator. Not my thing.

Read the pages on air preparation or air treatment for solutions to drying air so that there is no water in the compressed air stream to freeze.

As to the air flow question, why not read Add A Tank and Add A Compressor, both linked from the site map. I hope I have explained the process fully. If, after reading, I’ve left any holes in info, post a comment here with the question.


Question: Is it possible to create a higher CFM rating on an air compressor?

by Jay
(Oakville)

I have an air compressor with a rating of 4.1 CFM @ 90 PSI. I need an air compressor at 5.4 CFM @ 90 PSI. Is there a way that I can make this compressor give me the CRM that I need or should I go buy a new compressor?

Answer

My Response: The output of an air compressor is predicated on the pump size and the motor capacity. The designers balance these two and then take into account the most important factor… cost.

So, they decided that they would build an air compressor with 4.1 CFM @ 90 PSI to fit their particular niche and cost formula.

You could tamper with the pressure switch settings to increase the cut out pressure level. You could, also, destroy the compressor motor by overloading it in so doing.

Sorry Jay, you need to really think about how much air you need for now and the future, and then get a new air compressor with even more capacity than that. Folks almost always used more compressed air capacity than they have.


Question: Increase CFM of Compressor?

by ajay
(ludhiana, punjab, india)

Dear Sir,

i have a atlas copco screw air compressor with rated capacity 500 cfm at 7.5 bar and 400 cfm at 10 bar.

i currently running compressor at 10 bar, can i increase the flow of 400 cfm to 500 cfm by decreasing pressure to 7.5 psi? i have tried by regulating pressure switch . but there is no change in cfm. i need to know how can i increase the cfm of my compressor?

New Atlas Copco VSD air compressor
New Atlas Copco VSD air compressor
Photo: atlascopco.com

Answers

Compressor capacity
by: Bill

Unless you want to get into the physics side of it to understand why, and I don’t, it’s simpler for me just to understand that the higher the pressure output from a compressor, the lower the flow.

Your compressor is rated for 400 CFM at 7.5 bar you say, yet you are running it at 10 bar.

So, if you turn down the output pressure regulator to 7.5 bar from 10, your flow volume should increase to the 400 CFM as per the specs, if the compressor is running at efficiency.

In theory, and maybe practically too, if you don’t need air at 7.5 bar, turn the regulator down a little lower, and that should give you even more air flow at that lower setting… up to the maximum capacity of the compressor at that pressure, whatever that may be.

CFM
by: Doug in s.d.ca.

…is determined by the pump (screw) and the HP into it. So, the only way to increase flow is to increase power input. You can’t do that.

However, I’m driven to ask why you want to do this – depending on your needs, a storage tank may get you what you need, if you don’t require a *continuous* flow at the higher rate.

Usage?
by: Carl

Exactly what Bill says
What you need to find out is what tools/machines are you running? Do they actually need 10 Bar or even 7.5 Bar.

If you’re only using air tools then I’m sure you can turn it down but if you’re using CNC machines for example and they need the 10 Bar then you may need to ask yourself whether your compressor is powerful enough to cope?

What is your compressors power rated at, 5.5 kw? 7.5kw? More?

Let us know?


Want to comment about increasing CFM in a compressor? Please do.